Abstract

This paper proposes a three-layered co-running track model for predicting and analysing the dynamic behaviour of railway turnouts during the passage of trains. It is a multi-body dynamic model with space-dependent track parameters. The method is demonstrated by applying a UIC60-760-1:15 turnout (with curve radius 760 m and turnout angle 1:15). Equivalent track properties are introduced, based on the turnout track flexibility, and the rail receptance and impact force results are compared with the results from a finite element (FE) model. The validation results show a good agreement with those of the FE model, but with far less computational expense in terms of power and time. The new model is found to capture the dominant dynamic behaviour of the turnout across all frequencies up to 2000 Hz. The results have drawn that consideration of higher frequencies is important due to the nature of dynamic forces affecting the crossing region and high-speed cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.