Abstract

Designing invisibility cloaks has always been one of the most fascinating fields of research; in this regard, metasurface-based carpet cloaks have drawn researchers' attention due to their inherent tenuousness, resulting in a lower loss and easier fabrication. However, their performances are dependent on the incident angle of the coming wave; as a result, designing a carpet cloak capable of rendering objects under it invisible for a wide range of angles requires advanced methods. In this paper, using the Particle Swarm Optimization (PSO) algorithm, along with a trained neural network, a metasurface-based carpet cloak is developed capable to operate for a wide range of incident angles. The deep neural network is trained and used in order to accelerate the process of calculation of reflection phases provided by different unit cell designs. The resultant carpet cloak is numerically analyzed, and its response is presented and discussed. Both near-field and far-field results show that the designed carpet cloak operates very well for all incident angles in the range of 0 to 65 degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.