Abstract
Street design and land subdivision are significant tasks in the development and redevelopment planning process. Optimizing street and land subdivision layouts within a unified framework to achieve solutions that meet a set of objectives and constraints (e.g., minimizing parcel area deviation from standard values, minimizing land consumption for street construction, etc.) is a critical concern for planners, particularly in complex contexts such as blocks with irregular shapes and parcels of varying sizes and requirements. To address this challenge, a mathematical formulation is presented for the bi-level street network and land subdivision optimization problem. Subsequently, the solution procedure is outlined, which utilizes a genetic-based algorithm for street design and a memetic–genetic-based algorithm for land subdivision. Finally, two cases are presented, solved, and discussed to analyze and verify the proposed mathematical model and solution procedures. The results suggest that the formulated problem is suitable for addressing the coupled street network and land subdivision design problem, and it can be adapted and extended to other case studies. Additionally, the introduced ideas and algorithms satisfactorily solved the stated problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.