Abstract

The article considers issues of approaches to modeling spatial and planar pulley-block mechanisms in com-ponent-based hierarchical modeling systems for analysis of their stable and transient functional modes in the time domain. To do this, the analysis of developed models of pulley systems in existing works and justification of impos-sible use of the modeling approaches during synthesis of models of pulley-block systems of arbitrary structures in component- based modeling media are performed. Based on this, an alternative approach to the development of pulley-block, systems based on the principles of free, declarative, component- based modeling language Modelica is proposed. Using the typical design of a spatial pulley-block mechanism as an example, the order of its decompo-sition into individual components and subsequent aggregation from these components of the simulation model is considered. Separately, the main structural components, used to build models of tackle mechanisms of drilling systems are considered: a cable section, a block, a plug and winches, and mathematical models of their work are designed. The laws of combining these components with each other and the synthesis procedure of simulation models of the operation of block mechanisms of arbitrary design are described. Separate issues are considered regarding the determination of the length of the cable section, combining two spatially located blocks, as well as checking the adequacy of the synthesized simulation model. Based on the proposed approaches and mathematical models, a “Wire” modeling library was developed in Modelica language, which can be used to build simulation models of pulley-block mechanisms of drilling systems and an example of its use when creating a simulation model of a single riser wire tensioner is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call