Abstract

2-(1-Hydroxybenzyl)-N1′-methylthiamin (1b) is a model for the addition intermediate in the thiamin catalyzed benzoin condensation. However, N-alkylation alters the reactivity of the compound: instead of undergoing base-catalyzed formation of benzaldehyde and N1′-methylthiamin, it rapidly forms trimethyl amino pyrimidine (2b) and phenylthiazole ketone (3). The base-catalyzed fragmentation process is faster than the analogous enzymic reaction (in benzoylformate decarboxylase) under the same conditions. One possible mechanism for the rapid fragmentation is an internal hydride transfer from α-C2 to the methylene bridge between the heterocycles. To test the hydride mechanism we prepared α-C2-deuterated 1b and conducted the fragmentation reaction in normal water. Spectroscopic analysis revealed that the trimethyl aminopyrimidine product does not contain any deuterium, ruling out a hydride transfer mechanism. This supports a mechanism for fragmentation that proceeds instead via a proton transfer from α-C2. Since protonation (and hence, deprotonation) of that site is part of the normal catalytic cycle of benzoylformate decarboxylase, the enzyme must divert the reaction from the lowest energy pathway since it would share a common intermediate with the fragmentation process.Key words: thiamin, fragmentation, benzoylformate decarboxylase, proton transfer, hydride shift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call