Abstract

AbstractMultiple‐resonance thermally activated delayed fluorescence (MR‐TADF) emitters have garnered significant attention in recent years due to their remarkable properties, such as high luminescent quantum yield, robustness, and their compliance with the Broadcast Television 2020 standard for the new generation of ultrahigh‐definition. Despite these advancements, the operational lifetimes of organic light‐emitting diodes (OLEDs) relying on MR‐TADF emitters still fall short for practical application. It is believed that the enhancement of the intrinsic molecular stability of tBu‐DABNA, a fundamental backbone of MR‐TADF emitters, holds great promise to be a universal strategy for all MR‐TADF emitters improving the operational lifetimes of OLEDs. Herein, the design and synthesis of targeted deuteration are reported on donor and/or backbone of MR‐TADF emitters, where the structure‐property relationship between intrinsic molecular stability upon isotopic effect and device operational stability are examined. The isotopic analogs show a gradual increase in the device operational stability and achieve long‐lifetime LT80 (80% of the initial luminance of 1000 cd m−2) of 24.3 h for TADF‐sensitized fluorescence OLED, representing a sevenfold enhancement when compared with the undeuterated counterpart. This strategic deuteration approach underlines the importance of structural modification on materials toward device operational stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.