Abstract

Solution-processed high-efficiency fluorescent organic light-emitting diodes with an external quantum efficiency over 18% were developed by engineering a host material and device structure designed for solution process. A high triplet energy host material designed for the solution process, (oxybis(3-(tert-butyl)-6,1-phenylene))bis(diphenylphosphine oxide) (DPOBBPE), worked efficiently as the host of blue fluorescent devices because of good solubility, high photoluminescence quantum yield, and good film properties. The DPOBBPE host enabled a high external quantum efficiency of 18.8% in the fluorescent organic light-emitting diodes by the solution process. Moreover, 25.8% external quantum efficiency in the soluble blue thermally activated delayed fluorescent devices was also realized. The 25.8% external quantum efficiency of the DPOBBPE delayed fluorescent device and 18.8% external quantum efficiency of the fluorescent device are the highest efficiency values achieved in the solution-processed blue fluorescent organic light-emitting diodes. Moreover, the solution-processed fluorescent device showed an improved blue color coordinate of (0.14, 0.20) compared to (0.17, 0.31) of the delayed fluorescent device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call