Abstract

Despite proportionality being one of the tenets of data protection laws, we currently lack a robust analytical framework to evaluate the reach of modern data collections and the network effects at play. Here, we propose a graph-theoretic model and notions of node- and edge-observability to quantify the reach of networked data collections. We first prove closed-form expressions for our metrics and quantify the impact of the graph's structure on observability. Second, using our model, we quantify how (1) from 270,000 compromised accounts, Cambridge Analytica collected 68.0M Facebook profiles; (2) from surveilling 0.01% of the nodes in a mobile phone network, a law enforcement agency could observe 18.6% of all communications; and (3) an app installed on 1% of smartphones could monitor the location of half of the London population through close proximity tracing. Better quantifying the reach of data collection mechanisms is essential to evaluate their proportionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.