Abstract

Several side effects of anabolic-androgenic steroid (AAS) administration associated with training are reported in the biomechanical properties of the calcaneal tendon (CT) of rats. Thus, the aim of the present study is to evaluate the effects of the detraining and discontinuation of AAS administration on the CT morphology of rats submitted to exercise in water. Animals were divided into two groups (20/group): (1) Immediately after training (IA), and (2) Six weeks of detraining and AAS discontinuation (6W). The IA group included four subgroups: Sedentary (S), Trained (T), Sedentary with AAS administration (SAAS), and trained with AAS administration (TAAS). The 6W group included four subgroups: Sedentary (6W-S), six weeks of detrained (6W-T), six weeks of sedentary with AAS discontinuation (6W-SAAS), and six weeks of detrained with AAS discontinuation (6W-TAAS). Data show significant reduction in adipose cells volume density (Vv%) in the distal CT in 6W-TAAS group, indicating that training can exert a positive effect on the tendon. The 6W-SAAS group exhibited increased adipose cells Vv% in the distal region, compared with the W6-S and W6-T groups. A decrease in tendon proper cells Vv% and in peritendinous sheath cells Vv% of proximal and distal regions was also observed. In 6W-TAAS group showed increase in adipose cells, blood vessels, peritendinous sheath cells, and tendon proper cells Vv% in the distal region of the CT. The vertical jumps in water were not able to protect CT regions from the negative effects of AAS discontinuation for six weeks. However, after detraining and AAS discontinuation, many protective factors of the mechanical load in the long-term could be observed.

Highlights

  • The calcaneal tendon (CT) is the thickest and strongest tendon in the human body

  • Seven weeks of training increased blood vessels Vv% and peritendinous sheath cells in the distal region of the CT when compared with the control group (S) (Figures 2F,G and 3F)

  • anabolic-androgenic steroid (AAS) treatment increased cells Vv% in the proximal region of the tendon proper (Figure 2D) and promoted a reduction in the adipose cells Vv% in the distal region compared to the S group (Figure 1E)

Read more

Summary

Introduction

The CT consists of fibers originating from two muscles: The soleus muscle (SOL), which lays deep, and the gastrocnemius muscle, which lays superficially. The latter is composed of two heads—the lateral head of the gastrocnemius muscle (GL) and the medial head of the gastrocnemius muscle (GM), from each of which originates an independent subtendon [1]. Tendons consist of dense fibrous connective tissue that attaches muscles to bones. They are composed of a large density of collagen fibers and fibroblasts (tenocytes) embedded in a unique extracellular matrix (ECM) [2]. The main function of tendons is to transfer the contractile forces generated by the muscles to the bones, generating movement [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call