Abstract

Trichothecene mycotoxins are a group of structurally related sesquiterpenoid metabolites produced by multiple Fusarium species that often contaminate cereals and threaten human and animal health. The basic structure of this mycotoxin group is a characteristic 12, 13-epoxide group, which is considered an essential functional group for toxicity. In this study, using trichothecene mycotoxin deoxynivalenol (DON) as a representative substrate, we identified a novel trichothecene deepoxidation bacterium, Eggerthella sp. DII-9 (DII-9), from chicken intestines. DII-9 can grow and transform DON over abroad range of temperatures (20–45 °C) and pH values (5–10), suggesting the possibility of developing promising future applications as feed additives. Substrate specificity analysis showed that DII-9 is capable of promoting the deepoxidation of DON, HT-2, T-2 triol and T-2 tetraol. To explore the molecular mechanisms of the de-epoxidation of trichothecenes, the complete genome of DII-9 was sequenced and characterized. Altogether, a novel detoxification bacterium for trichothecene mycotoxins was identified and characterized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call