Abstract

Xenobiotic chlorinated phenols have been found in fresh and marine waters and are toxic to many aquatic organisms. Metabolism of 2,4-dichlorophenol (2,4-DCP) in the marine microalga Tetraselmis marina was studied. The microalga removed more than 1 mM of 2,4-DCP in a 2 l photobioreactor over a 6 day period. Two metabolites, more polar than 2,4-DCP, were detected in the growth medium by reverse phase HPLC and their concentrations increased at the expense of 2,4-DCP. The metabolites were isolated by a C8 HPLC column and identified as 2,4-dichlorophenyl-β- d-glucopyranoside (DCPG) and 2,4-dichlorophenyl-β- d-(6- O-malonyl)-glucopyranoside (DCPGM) by electrospray ionization-mass spectrometric analysis in a negative ion mode. The molecular structures of 2,4-DCPG and 2,4-CPGM were further confirmed by enzymatic and alkaline hydrolyses. Thus, it was concluded that the major pathway of 2,4-DCP metabolism in T. marina involves an initial conjugation of 2,4-DCP to glucose to form 2,4-dichlorophenyl-β- d-glucopyranoside, followed by acylation of the glucoconjugate to form 2,4-dichlorophenyl-β- d-(6- O-malonyl)-glucopyranoside. The microalga ability to detoxify dichlorophenol congeners other than 2,4-DCP was also investigated. This work provides the first evidence that microalgae can use a combined glucosyl and malonyl transfer to detoxify xenobiotics such as dichlorophenols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.