Abstract

Toxicity and metabolism of para-chlorophenol ( p-CP) in the marine microalga Tetraselmis marina have been studied. The inhibition constant EC 50 for p-CP was 272 ± 17 μM (34.8 ± 2.2 mg L −1) under the experimental conditions. Two metabolites were detected in the growth medium in the presence of p-CP by reverse phase HPLC and their concentrations increased at the expense of p-CP. The two metabolites, which were found to be more polar than p-CP, were isolated by a C18 column. They were identified as p-chlorophenyl-β- d-glucopyranoside ( p-CPG) and p-chlorophenyl-β- d-(6- O-malonyl)-glucopyranoside ( p-CPGM) by electrospray ionization-mass spectrometric analysis in a negative ion mode. The molecular structures of p-CPG and p-CPGM were further confirmed by enzymatic and alkaline hydrolyses. Treatment with β-glucosidase released free p-CP and glucose from p-CPG, whereas p-CPGM was completely resistant. Alkaline hydrolysis completely cleaved the esteric bond of the malonylated glucoconjugate and yielded p-CPG and malonic acid. It was concluded that the pathway of p-CP metabolism in T. marina involves an initial conjugation of p-CP to glucose to form p-chlorophenyl-β- d-glucopyranoside, followed by acylation of the glucoconjugate to form p-chlorophenyl-β- d-(6- O-malonyl)-glucopyranoside. The metabolism of p-CP in T. marina was mainly driven by photosynthesis, and to a lesser extent by anabolic metabolism in the dark. Accordingly, the detoxification rate under light was about seven times higher than in the darkness. This work provides the first evidence that microalgae can adopt a combined glucosyl transfer and malonyl transfer process as a survival strategy for detoxification of such xenobiotics as p-CP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.