Abstract

Marine and coastal ecosystems are influenced by oil from chronic contamination or sporadic oil spills. An oil spill was simulated in an aquarium-based experiment designed to reproduce interactions of crude oil with inert environmental components, particularly adhesion on shore gravel and dissolution in sea water. Total experimental oil concentrations were in the range of comparable hydrocarbon concentrations following an oil spill. Furthermore, the possible interaction of a chemical (anthropogenic) stressor, such as oil PAHs, and a “natural” stressor like desalination, was simulated. In order to assess the biological effects of crude oil contamination and desalination (each individually and in combination) on the blue mussel Mytilus edulis L., biochemical responses were estimated including: detoxification capacity by glutathione-S-transferase (GST) activity, reduced glutathione (GSH) level, and protein quality control by autophagy-related proteases cathepsin B (CatB), cathepsin D (CatD), and calcium-dependent calpain-like proteases. Oil treatment stimulated defense system response in the mussels with primary effects on GST and protease-mediated reactions such as the activation of CatB, CatD, and calpains. Most of biomarkers responded to oil in a dose- and time-dependent manner. Additional environmental stress, such as desalination, promoted the oil-induced activation of GST and CatD while resulting in a delay or impairement of the defense response to oil by GSH and proteases CatB and calpains. Thus, biomarker data shows that combined effects of oil compounds and desalination can be realized in both a synergistic and an antagonistic manner. The evaluated interaction between oil pollution effects and sub-optimal salinity on M. edulis indicates the potential risk of maladaptation to the biota of estuaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.