Abstract

AbstractThe initial step of chemical reaction initiated by laser-generated shock waves has been observed in glycidyl azide polymer (GAP) in condensed phase. Shocks are generated by pulsed laser vaporization of thin aluminum films and launched into adjacent films of GAP at 77 K. Comparison of FIIR spectra obtained before and after shock passage shows that initial reaction involves elimination of molecular nitrogen from the azide functional groups of the polymer. The shock arrival time has been measured by a velocity interferometer as a function of thickness of GAP and laser fluence. The shock pressure has been calculated by using a universal liquid state Hugoniot. A simple model is proposed to calculate shock velocity and pressure as a function of laser fluence. The results are in agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.