Abstract

The purpose of this paper is to develop an efficient approach for vibro-acoustic analysis. Being simple and representative, an exited plate–acoustic system is selected as a validation case for the vibro-acoustic analysis as the system presents one two-dimensional statistical component (modal dense structure panel—plate) connected to the other component (deterministic acoustic volume—cavity) through the area junction over a surface domain, rather than at a line boundary. Potential industrial applications of the system vibro-acoustic analysis would be in acoustic modelling of vehicle body panels such as the cabin roof panel, and door panels for the boom noise analysis. A new deterministic-statistical analysis approach is proposed from a combination or hybrid of deterministic analysis and statistical energy analysis (SEA) approaches. General theory of the new deterministic-statistical analysis approach is introduced. The main advantage of the new deterministic-statistical analysis approach is its possibility in place of the time consuming Monte Carlo simulation. In order to illustrate and validate the new deterministic-statistical analysis approach, three approaches of the deterministic analysis, the statistical energy analysis and the new deterministic-statistical analysis are then applied to conduct the plate–acoustic system modelling, and their results will be compared. The vibro-acoustic energy coupling characteristic of the plate–acoustic system will be studied. The most suitable frequency range for the new approach will be identified in consideration of computational accuracy, information and speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.