Abstract
In order to widen the scope of the applications of deterministic homogenization, we consider here the homogenization problem for a family of integral functionals. The homogenization procedure tending to be classical, the choice focused on the convex integral functionals is made just to simplify the presentation of the paper. We use a new approach based on the Stepanov type spaces, which approach allows us to solve various problems such as the almost periodic homogenization problem and others without resorting to additional assumptions. We then apply it to obtain a general homogenization result and then we provide a number of physical applications of the result. The convergence method used falls within the scope of two-scale convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Differential Equations and Applications NoDEA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.