Abstract

The paper deals with the homogenization problem beyond the periodic setting, for a degenerated nonlinear non-monotone elliptic type operator on a perforated domain ? ? in ? N with isolated holes. While the space variable in the coefficients a 0 and a is scaled with size ? (?>0 a small parameter), the system of holes is scaled with ? 2 size, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The homogenization problem is formulated in terms of the general, so-called deterministic homogenization theory combining real homogenization algebras with the ÎŁ-convergence method. We present a new approach based on the Besicovitch type spaces to solve deterministic homogenization problems, and we obtain a very general abstract homogenization results. We then illustrate this abstract setting by providing some concrete applications of these results to, e.g., the periodic homogenization, the almost periodic homogenization, and others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.