Abstract

We propose a scheme to entangle Silicon-Vacancy (SiV) centers embedded in a diamond acoustic waveguide. These SiV centers interact with acoustic modes of the waveguide via strain-induced coupling. Through Morris-Shore transformation, the Hilbert space of this hybrid quantum system can be factorized into a closed subspace in which we can deterministically realize the symmetrical Dicke states between distant SiV centers with high fidelity. In addition, the generation of entangled Dicke states can be controlled by manipulating the strength and frequency of the driving field applied on SiV centers. This protocol provides a promising way to prepare multipartite entanglement in spin-phonon hybrid systems and could have broad applications for future quantum technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.