Abstract

Color centers have emerged as a leading qubit candidate for realizing hybrid spin-photon quantum information technology. One major limitation of the platform, however, is that the characteristics of individual color centers are often strain dependent. As an illustrative case, the silicon-vacancy center in diamond typically requires millikelvin temperatures in order to achieve long coherence properties, but strained silicon-vacancy centers have been shown to operate at temperatures beyond 1 K without phonon-mediated decoherence. In this work, we combine high-stress silicon-nitride thin films with diamond nanostructures to reproducibly create statically strained silicon-vacancy color centers (mean ground state splitting of 608 GHz) with strain magnitudes of ∼4×10−4. Based on modeling, this strain should be sufficient to allow for operation of a majority silicon-vacancy centers within the measured sample at elevated temperatures (1.5 K) without any degradation of their spin properties. This method offers a scalable approach to fabricate high-temperature operation quantum memories. Beyond silicon-vacancy centers, this method is sufficiently general that it can be easily extended to other platforms as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call