Abstract
We provide a natural learning process in which the joint frequency of (time-averaged) empirical play converges into the set of convex combinations of Nash equilibria. Furthermore, the actual distribution of players' actions is close to some (approximate) Nash equilibria on most rounds (on all but a vanishing fraction of the rounds). In this process, all players rationally choose their actions using a public prediction made by a deterministic, weakly calibrated algorithm. For this to be possible, we show that such a deterministic (weakly) calibrated learning algorithm exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.