Abstract

The hidden subgroup problem (HSP) plays a crucial role in the field of quantum computing, since several celebrated quantum algorithms including Shor's algorithm have a uniform description in the framework of HSP. The problem is as follows: for a finite group G and a finite set X, given a function f:G→X and the promise that for any g1,g2∈G,f(g1)=f(g2) iff g1H=g2H for a subgroup H≤G, the goal of the decision version is to determine whether H is trivial, and the goal of the search version is to find H. Nayak (2021) asked whether there exist deterministic algorithms with O(|G||H|) query complexity for HSP. We answer this problem for Abelian groups, which also extends the main results of Ye et al. (2021), since here the algorithms do not rely on any prior knowledge of H.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.