Abstract

The hidden subgroup problem is the foundation of many quantum algorithms. An efficient solution is known for the problem over abelian groups, employed by both Simon's algorithm and Shor's factoring and discrete log algorithms. The nonabelian case, however, remains open; an efficient solution would give rise to an efficient quantum algorithm for graph isomorphism. We fully analyze a natural generalization of the algorithm for the abelian case to the nonabelian case and show that the algorithm determines the normal core of a hidden subgroup: in particular, normal subgroups can be determined. We show, however, that this immediate generalization of the abelian algorithm does not efficiently solve graph isomorphism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call