Abstract

Low-crested and submerged breakwaters are frequently employed as coastal defence structures. Their efficiency is governed by wave energy dissipation, and the wave transmission coefficient can evaluate this parameter. The current study conducts experimental investigations on both low-crested and submerged breakwaters exposed to different wave conditions to compare their performance with that of emerged breakwaters. The current study provides a comprehensive review of existing formulae and highlights the impact of design variables. To evaluate the reliability of each existing formula, four “reference” configurations are used. Having these structures at the same overall volume, the results also provide a useful tool for engineers involved in the lowering operation of existing breakwaters. Nature and magnitude of governing parameters are investigated, and some points of criticism are outlined. The comparison results show that few of the existing equations give reliable estimates of the transmission coefficient for all the models tested in this study. Higher values of root mean square error are related to the emerged breakwater rather than the submerged ones. To obtain information about the transmitted wave energy, spectral analysis is applied as well. Different behaviours of the transmitted spectrum, n terms of shape and peak frequency, are highlighted. The results improve the overall knowledge on formulae that are in the literature, in order to make the user more aware.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call