Abstract

Abstract A simple, inexpensive and quick method for measuring the van Genuchten soil water retention curve (SWRC) model parameters for cohesionless soil is presented. The proposed method is an integration of laboratory testing and numerical modeling. The experimental testing consists of multistage bottom-top water imbibition of a dry sand column while recording pore pressure at the inlet. The experiment is then simulated numerically using Hydrus 1D, and the van Genuchten SWRC model parameters are determined through inverse modeling to match the recorded pore pressures. The soil column flushing includes multiple flow stoppages and resumptions, all before permeating one pore volume of water. The flow stoppage results in a time-dependent redistribution of moisture near the waterfront that is controlled by the unsaturated hydraulic properties of the soil and is reflected by changes in the pore pressure measurements. The uniqueness of this method comes from the simple experimental setup and the multistage flushing that can reduce the testing time by a factor of 30 compared with other methods. The results from testing three different sands with different grain size distributions are presented. The new method generated consistent results from multiple specimens tested at a range of flow rates for the three sands. The hypothesis behind moisture redistribution during flow stoppage was confirmed through a combination of experimental and numerical observations. The van Genuchten SWRC parameters obtained from the new method were comparable to those obtained using the conventional hanging column test for Sands B and C and available data in the literature. Sand A could not be tested using the hanging column test because of its large particle size, which demonstrates the wide range of soils that can be tested using the new proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call