Abstract

By relating the charge multiplicity distribution and the temperature of a de-exciting nucleus through a deep neural network, we propose that the charge multiplicity distribution can be used as a thermometer of heavy-ion collisions. Based on an isospin-dependent quantum molecular dynamics model, we study the caloric curve of reaction Pd103 + Be9 with the apparent temperature determined through the charge multiplicity distribution. The caloric curve shows a characteristic signature of nuclear liquid-gas phase transition around the apparent temperature Tap = 6.4MeV, which is consistent with that through a traditional heavy-ion collision thermometer, and indicates the viability of determining the temperature in heavy-ion collisions with multiplicity distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.