Abstract
The quality of the modal test is directly related to obtaining accurate frequency response functions. To conduct a high-quality modal test, the instrumentation used in the test must be placed in the most suitable locations and in sufficient numbers. In this study, pre-test, drive point residual (DPR), and correlation algorithms have been developed to ensure a high-quality modal test. The pre-test and drive point residual algorithms are used to determine the positions and numbers of test instrumentation, while the correlation algorithm is used to identify similarities between the test and finite element models. Finally, the proposed algorithms have been tested and validated on an exhaust model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Acoustics and Vibration
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.