Abstract

A comprehensive modal survey test based on multi-input multi-output experimental modal analysis techniques was conducted on the CASSIOPE spacecraft. This paper describes the details of the methodology used to perform the successful experimental modal test to efficiently extract the critical modes of the spacecraft. Results from the modal test have been used to validate the analytical finite element model and to provide confidence in the structural integrity of the spacecraft design. The test was performed on the flight model of the CASSIOPE spacecraft in the final stages of integration, which included all of the payload and bus instruments and electronics boxes. The multiple-input excitation for the spacecraft was generated using two portable electrodynamic modal shakers installed on the top and bottom of the spacecraft to distribute the excitation energy and the response was measured using 81 miniature accelerometers. A digital multi-channel data acquisition system was used to record the time domain data and calculate the frequency domain spectra. Advanced modal analysis software was used to extract modal parameters from the measured data and critical modes were compared with predictions from the finite element model. Most modes identified through the experimental data compared favorably with the predictions. Nevertheless, some differences were large enough to require iterative update of the finite elelement model. The structural dynamics information from the updated finite element model was used to plan the mechanical vibration qualification test and predict the response of the spacecraft to the launch vehicle environmental loads through coupled loads analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.