Abstract
This paper reports a laboratory study of the physical, mechanical, and thermal properties of designed composite materials based on Phenylone C1 filled with silica gel. Structural plastics, due to their high chemical and wear resistance, sufficient level of physical, mechanical, and thermal properties, can significantly improve the technical characteristics of machines and mechanisms. However, some structural plastics, including Phenylone C1, have a significant drawback – a narrow temperature range of their processing, which leads to a complication of technological equipment and increases the cost of production. It was established that the technical processing of the initial composite material into finished products could be improved by introducing fillers. The regularities of influence of silica gel content on the level of thermal and physical-mechanical properties of polymer composite materials based on Phenylone C1 have been established. It was found that the introduction of silica gel into Phenylone C1 leads to an increase in stress at the yield strength and modulus of elasticity at compression by 6.3 % and 13.3 %, respectively, compared to the original material. It was established that the heat resistance of the filled composite increases by 11.6 % with a decrease in thermal linear expansion by 10‒20 %, depending on the content of the filler. It was found that with an increase in silica gel concentration in the polymer matrix, the temperature of the onset of active destruction shifts towards higher temperatures. When filled in the amount of 30 % by weight, this temperature reaches 375 °C, which increases the temperature range of processing the designed material by 25 °C. The study results make it possible to optimize the system of tolerances and landings of parts made of polymer-composite materials, simplify the technology of their manufacture, and, as a result, reduce their cost
Highlights
Modern industry is experiencing an acute shortage of special-purpose structural materials, which are cheaper and have a higher level of properties than existing ones
Based on the obtained results, it was established that the introduction of silica gel into Phenylone C1 leads to an improvement in the level of physical-mechanical properties in the region of filler concentrations from 0 to 30 % by weight
According to the results from our thermal physical study (Fig. 5), it was established that the introduction of silica gel into Phenylone C1 leads to an improvement in the level of thermal properties in the region of the examined filler concentrations
Summary
Modern industry is experiencing an acute shortage of special-purpose structural materials, which are cheaper and have a higher level of properties than existing ones. The introduction of these materials into machine units and mechanisms could increase their reliability and durability, productivity, safety for the environment, etc. The performance of polymeric materials depends on the nature of the external forces (for example, static or dynamic load) All these factors lead to the fact that many friction nodes are made of metals and their alloys whose physical-mechanical characteristics outperform those of polymers [2]. The main disadvantages include limited (narrow) modes of processing the source material into finished products (parts) This requires the use of high-precision technological equipment, which does not always allow for a low cost of production. Technology organic and inorganic substances that could make it possible to optimize the modes of their processing in finished products
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have