Abstract

Hard turning is recent upcoming technology through which surface quality of machined components can be enhanced while comparing with the traditional grinding method. Since the absence of metal cutting fluids during this process, numerous harmful effects on shop floor operators and possible negative impacts on environment can be eliminated. Normally some of the vital machinability aspects such as surface integrity of machined parts has been influenced by magnitude of cutting temperature which evolved in metal cutting interface. Therefore in this experimental investigation, the influence of various process control parameters on tool-chip interface temperature was evaluated during hard turning of AISI D3 tool steel in dry condition. The machining trials were conducted as per the L9 Taguchi DOE approach and subsequent experimental data were analysed with the use of Design-Expert® V7 statistical software. This experiment results revealed that feed rate is having predominant influence in determining the magnitude of cutting temperature followed by depth of cut and cutting speed whereas the influence of cutting tool nose radius is insignificant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call