Abstract

The structural and the optical properties of different Si nanostructures have been compared. Detailed optical properties of Si nanowires arrays of different optical lengths, fabricated by facile electroless etching technique, have been reported. The theoretical calculation of exponential sine profile at constant λ = 600 nm shows a better explanation in terms of gradient index with optical length for vertical nanowires. The observations signify the possibility of strong light trapping due to an exponential gradient towards the high index along the nanowires and the existence of dense subwavelength features. The optical admittance (Ƶ) shows a strong impact on optical distance (Z) for Z < H, owing to the electromagnetic wave interaction with the nanowires that perceive a different Ƶ at the oblique angle of incidence (AOI). In addition, the experimental reflectance data and the theoretical model for transverse electric and transverse magnetic modes predict that an optical length of 5 μm can exhibit a very low reflectance value. This indicates that the Si nanowires are polarization insensitive over a wide range of AOI (0°–80°). Moreover, Raman spectra showed a very strong light confinement effect in the first order transverse optical band with increasing etching depths. The morphological dependent resonance theory predicts a strong localized light field confinement in the lower wavelength regime for SiNWs. The effect on the strong resonant absorption modes was further correlated with the simulation results obtained by using COMSOL. The obtained results are likely to enhance the maximum absorption of SiNWs for various photonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call