Abstract

AbstractWe discuss methods to determine L‐M‐N coordinate systems for current sheet crossings observed by the Magnetospheric Multiscale (MMS) spacecraft mission during ongoing reconnection, where eL is the direction of the reconnecting component of the magnetic field, B, and eN is normal to the magnetopause. We present and test a new hybrid method, with eL estimated as the maximum variance direction of B (MVAB) and eN as the direction of maximum directional derivative of B, and then adjust these directions to be perpendicular. In the best case, only small adjustment is needed. Results from this method, applied to an MMS crossing of the dayside magnetopause at 1305:45 UT on 16 October 2015, are discussed and compared with those from other methods for which eN is obtained by other means. Each of the other evaluations can be combined with eL from MVAB in a generalized hybrid approach to provide an L‐M‐N system. The quality of the results is judged by eigenvalue ratios, constancy of directions using different data segments and methods, and expected sign and magnitude of the normal component of B. For this event, the hybrid method appears to produce eN accurate to within less than 10°. We discuss variance analysis using the electric current density, J, or the J × B force, which yield promising results, and minimum Faraday residue analysis and MVAB alone, which can be useful for other events. We also briefly discuss results from our hybrid method and MVAB alone for a few other MMS reconnection events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.