Abstract

The traditional data envelopment analysis model allows the decision-making units (DMUs) to evaluate their maximum efficiency values using their most favourable weights. This kind of evaluation with total weight flexibility may prevent the DMUs from being fully ranked and make the evaluation results unacceptable to the DMUs. To solve these problems, first, we introduce the concept of satisfaction degree of a DMU in relation to a common set of weights. Then a common-weight evaluation approach, which contains a max–min model and two algorithms, is proposed based on the satisfaction degrees of the DMUs. The max–min model accompanied by our Algorithm 1 can generate for the DMUs a set of common weights that maximizes the least satisfaction degrees among the DMUs. Furthermore, our Algorithm 2 can ensure that the generated common set of weights is unique and that the final satisfaction degrees of the DMUs constitute a Pareto-optimal solution. All of these factors make the evaluation results more satisfied and acceptable by all the DMUs. Finally, results from the proposed approach are contrasted with those of some previous methods for two published examples: efficiency evaluation of 17 forest districts in Taiwan and R&D project selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.