Abstract
The identification of classes of nutritionally similar food items is important for creating food exchange lists to meet health requirements and for informing nutrition guidelines and campaigns. Cluster analysis methods can assign food items into classes based on the similarity in their nutrient contents. Finite mixture models use probabilistic classification with the advantage of taking into account the uncertainty of class thresholds. This paper uses univariate Gaussian mixture models to determine the probabilistic classification of food items in the South African Food Composition Database (SAFCDB) based on nutrient content. Classifying food items by animal protein, fatty acid, available carbohydrate, total fibre, sodium, iron, vitamin A, thiamin and riboflavin contents produced data-driven classes with differing means and estimates of variability and could be clearly ranked on a low to high nutrient contents scale. Classifying food items by their sodium content resulted in five classes with the class means ranging from 1.57 to 706.27 mg per 100 g. Four classes were identified based on available carbohydrate content with the highest carbohydrate class having a mean content of 59.15 g per 100 g. Food items clustered into two classes when examining their fatty acid content. Foods with a high iron content had a mean of 1.46 mg per 100 g and was one of three classes identified for iron. Classes containing nutrient-rich food items that exhibited extreme nutrient values were also identified for several vitamins and minerals. The overlap between classes was evident and supports the use of probabilistic classification methods. Food items in each of the identified classes were comparable to allowed food lists developed for therapeutic diets. This data-driven ranking of nutritionally similar classes could be considered for diet planning for medical conditions and individuals with dietary restrictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.