Abstract

A sensitive, reliable and reproducible HPLC method with electrochemical detection (HPLC-ECD) has been developed for the separation and quantification of levodopa methyl ester (LDME) and its impurities such as levodopa (l-DOPA), 3-methoxytyrosine (MTS) and l-tyrosine (TS) in bulk drug and pharmaceutical dosage form. The separation was performed on an LC18 column by isocratic elution with methanol-acetonitrile-50 mm potassium dihydrogen phosphate (8:2:90, v/v/v) containing 5 mm sodium 1-hexanesulfonate, 5 mm EDTA and 5 mm sodium chloride, adjusted with phosphoric acid to a pH of 3.2 as mobile phase. The correlation coefficients of linear regression for LDME, L-DOPA, MTS and TS were more than 0.999. The detection limits for L-DOPA, MTS and TS were 3.15, 2.04 and 2.88 ng/mL, respectively. The precision was checked in terms of F-test variance ratio using potentiometric titration as reference. The separation of dopa methyl ester enantiomers by chiral chromatography is also described. This method is capable of separating the two enantiomers with a selection of 1.4 and a resolution of 8.4. Both methods were found to be stable and useful in the quality control of the bulk material and formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.