Abstract

Abstract Oil production from shale and tight formations will increase to more than 6 million barrels per day (b/d) in the coming decade, making up most of total U.S. oil production (> 50%). However, achieving an accurate formation evaluation of shale faces many complex challenges. One of the complexities is the accurate estimation of shale properties from well logs, which is initially designed for conventional reservoirs. When we use the well logs to obtain shale properties, they often cause some deviations. Therefore, in this work, we combine cores and well logs together to provide a more accurate guideline for estimation of total organic carbon, which is primarily of interest to petroleum geochemists and geologists. Our work is based on Archie's equation. Resistivity log will lead to some incorrect results, such as total resistivity, when we follow the conventional interpretation procedure in well logs. Porosity is another complex parameter, which cannot be determined only by well log, i.e. density, NMR, and Neutron log. Therefore, the flowchart of TOC calculation includes five main parts: (I) the shale content calculation using Gamma log; (II) the determination of shale distributions using Density and Neutron logs and cross-plot; (III) the calculation of total resistivity at different distribution types; (IV) obtaining porosity using core analysis, NMR and density logs; and (V) the calculation of TOC from modified Archie's equation. The results indicate that the shale content has a strong effect on estimation of water saturation and hydrocarbon saturation. Especially, the effect of shale content is exacerbated at a low water saturation. A more accurate flowchart for TOC calculation is established. Based on Archie's equation, we modify total resistivity and porosity by combining Gamma Log, Density Log, Neutron Log, NMR Log, and Cross-plot. An easier way to estimate porosity is provided. We combine the matrix density and kerogen density together and obtain them from core analysis. Poupon's et al. (1954) laminar model has some limitations when applying in shale reservoirs, especially at a low porosity. Literature surveys show few studies on the flowchart of TOC calculation in shale reservoirs. This paper provides some insights into challenges of well logs, core analysis in shale reservoirs and a more accurate guideline of TOC calculation in shale reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.