Abstract

AbstractGlobal warming is causing an apparent rapid retreat of many glaciers worldwide. In addition to mass-balance investigation, the determination and monitoring of total glacial ice volume and ice-thickness distribution are important parameters for understanding the interactions between climate and the complex glacier system. Because of spatially irregular and sparse datasets, scaling of volume and ice-thickness distribution is often a challenging problem. This study focuses on two small (<2 km2) temperate glaciers in the Hohe Tauern (Eastern Alps) region of central Austria. The period 2003–04 saw the first use of ground-penetrating radar (GPR) to determine the total ice volume and ice-thickness distribution of the two glaciers. A centre frequency of 20 MHz was used in point measuring mode. Despite variable data quality, bedrock reflections up to depths of >100m were identified in the data. The acquired GPR data are irregularly distributed and the spatial density is too low to calculate reasonable bedrock topography with standard interpolation approaches. Thus one main focus of this study was to develop an appropriate interpolation technique. Eventually, kriging technique and a glacial mechanically based interpolation parameter were used. Mean calculated ice thicknesses for the two investigated glaciers are 40–50 m, with a maximum of 150–165 m. No direct validation data are available, so different considerations support the computed bedrock topography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call