Abstract

In this work, the effect of input variability and model uncertainty on the distillate composition of a continuous distillation tower is studied. To do that, we developed a stationary distillation code by combining mass and energy balance equations with a liquid-vapor equilibrium model and tray efficiency correlations. Feed and model uncertainties were modeled by using normal and uniform distributions respectively. A Monte Carlo propagation method was used to determine the upper and lower uncertainty margins of the distillate composition. The results of the application to a methanol-water distillation showed that the model uncertainty is as high as that of the feed variability. The information can be useful for the robust design of distillation towers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call