Abstract

Accuracy of ionization chamber (IC) to measure the scatter output factor (Scp) of a linear accelerator (linac) is crucial, especially in small field (<4 cm × 4 cm). The common IC volume of 0.6 cc is not adequate for small-field measurement and not all radiotherapy centers can afford to purchase additional IC due to the additional cost. This study aimed to determine the efficiency of the EGSnrc Monte Carlo (MC) to calculate the Scp for various field sizes including small field in Elekta Synergy (Agility multileaf collimator) linac. The BEAMnrc and DOSXYZnrc user codes were used to simulate a 6 MV linac model for various field sizes and calculate the radiation dose output in water phantom. The modeled linac treatment head was validated by comparing the percentage depth dose (PDD), beam profile, and beam quality (Tissue Phantom Ratio (TPR)20,10) with the IC measurement. The validated linac model was simulated to calculate the Scp consisting of collimator scatter factor (Sc) and phantom scatter factor (Sp). The PDD and beam profile of the simulated field sizes were within a good agreement of ±2% compared with the measured data. The TPR20,10 value was 0.675 for field size 10 cm × 10 cm. The Scp, Sc, and Sp simulated values were close to the IC measurement within ±2% difference. The simulation for Sc and Sp in 3 cm × 3 cm field size was calculated to be 0.955 and 0.884, respectively. In conclusion, this study validated the efficiency of the MC simulation as a promising tool for the Scp calculation including small-field size for linac.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call