Abstract
The metal present in the implant creates artifacts during the treatment simulation, which impacts the treatment planning and delivery of the prescribed dose to the target and sparing normal tissues. This retrospective study evaluated the uncertainties in the planning and delivery of doses for prosthesis cases with dedicated phantom. In this retrospective study, 11 patients with a hip prosthesis having cervix carcinoma were selected. Two treatment plans were generated on treatment planning system (TPS) for each case. Plan_No_Res was without any beam restriction, and Plan_exit_only was the plan with restricted beam entry through the metallic implant. An indigenous phantom was utilized to verify the accuracy of the treatment. In the phantom, some groves were present, which could be filled by implants that mimic the patient's geometries, like left, right and bilateral femur implants. The delivered doses were recorded using optically stimulated luminescence dosimeters (OSLDs), which were placed at different positions in the phantom. The plans were further calculated using megavoltage computed tomography (MVCT) scans acquired during treatment. The patient data showed no significant dose changes between the two planning methods. The treatment time increases from 412.18 ± 86.65 to 427.36 ± 104.80 with P = 0.03 for Plan_No_Res and Plan_exit_only, respectively. The difference between planned and delivered doses of various points across phantom geometries was within ± 9.5% in each case as left, right, and bilateral implant. The variations between OSLDs and MVCT calculated doses were also within ± 10.8%. The study showed the competency of tomotherapy planning for hip prosthesis cases. The phantom measurements demonstrate the errors in dosimetry near the implant material, suggesting the need for precise methods to deal with artifact-related issues.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.