Abstract

A commonly used beam quality index (Q) for high-energy photon beams is the tissue phantom ratio (TPR20,10) for a square field of 10 x 10 cm2 and SDD of 100 cm. On some specialized radiotherapy treatment equipment such a reference collimator setting is not achievable. Likewise a flat beam profile, not explicitly required in dosimetry protocols, but certainly influences the measurement of Q, is not always produced. In this work, a method was developed in order to determine Q at any field size, especially for small and nonflattened beams. An analytical relationship was derived between TPR20,10 for arbitrary field sizes and Q [the TPR20,10 (10 x 10 cm2)] as quality index. The proposed model equation was fitted to the measured and published data in order to achieve three general fit parameters. The procedure was then tested with published data from TomoTherapy and CyperKnife treatment devices. For standard flattened photon fields, the uncertainty in Q measured at any field size using the parameters derived from this study is better than 1%. In flattening-filter free beams, the proposed procedure results in a reliable Q for any field size setting. A method is introduced and successfully tested in order to measure the beam quality under nonstandard conditions. It can be used, e.g., to get energy dependent correction factors as tabulated in dosimetry codes of practice even if standard conditions are not adjustable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call