Abstract
The quantitative characterization of macro-porous materials with regard to pore width and pore width distribution was accomplished for the first time by using 1H-NMR microscopy in combination with suitable methods of digital image analysis. Here we present the newly developed algorithm and discuss the first experimental results. Large-pored glass filter systems filled with silicon oil as intrusion fluid were used as references. Silicates of unknown pore width were analyzed both with the new method and with Hg intrusion. NMR image data were recorded using a 3D spin echo sequence, which gave 128 slice images with a spatial resolution of 14.5 μm × 14.5 μm within each slice, with a slice-thickness of 37 μm or 48 μm. A quantitative evaluation of the 3D NMR data, with regard to pore width and pore width distribution, was done using the appropriate image processing function of the HORUS program. Individual slice evaluation was performed first, followed by an analysis of the binding elements between the slices. Pore widths of the glass filters determined using this analytical algorithm were in accordance with the manufacturer’s values, and silicate pore widths were in good agreement with the values determined by Hg intrusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.