Abstract

A human calcaneus bone, consisting of hydroxyapatite and collagen fibers, was successively sliced into samples in a direction perpendicular to the long axis of the bone and parallel to the long axis of the human lower limb. The transmitted microwave intensities of 12 GHz, reflecting the dielectric property, were measured for the slice samples using Osaki's microwave method (Tappi J., 1987; 70:105-108). The complex dielectric constant of 12 GHz of the collagen fiber film was much greater than that of hydroxyapatite disc, which demonstrated that the dielectric anisotropy observed for the sliced bone was mainly affected by the collagen fibers. The angular dependence of the transmitted microwave intensity gives the orientation angle reflecting the direction of the collagen-fiber orientation, and the degree of orientation reflecting the anisotropic property of collagen fibers. The orientation angle and the degree of orientation for the slice samples changed with changing position along the long axis of the calcaneus bone. The direction of orientation deviated to the lateral side at the heel part of the left calcaneus, and to the medial side at the middle part. The degree of orientation is relatively high at the heel part and low at the middle. Such results give a two-dimensional distribution of collagen-fiber orientation in the left calcaneus, and suggest that the direction and degree of orientation are closely related to the direction and magnitude of the stress applied to the bone, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call