Abstract

BackgroundAdjuvant radiotherapy (RT) of left-sided breast cancer is increasingly performed in voluntary deep inspiration breath-hold (vDIBH). The aim of this study was to estimate the reproducibility of breath-hold level (BHL) and to find optimal bony landmarks for matching of orthogonal setup images to minimise setup margins.Methods1067 sets of images with an orthogonal setup and tangential field from 67 patients were retrospectively analysed. Residual position errors were determined in the tangential treatment field images for different matches of the setup images. Variation of patient posture and BHL were analysed for position errors of the vertebrae, clavicula, ribs and sternum in the setup and tangential field images. The BHL was controlled with a Varian RPM® system. Setup margins were calculated using the van Herk’s formula. Patients who underwent lymph node irradiation were also investigated.ResultsFor the breast alone, the midway compromise of the ribs and sternum was the best general choice for matching of the setup images. The required margins were 6.5 mm and 5.3 mm in superior-inferior (SI) and lateral/anterior-posterior (LAT/AP) directions, respectively. With the individually optimised image matching position also including the vertebrae, slightly smaller margins of 6.0 mm and 4.8 mm were achieved, respectively. With the individually optimised match, margins of 7.5 mm and 10.8 mm should be used in LAT and SI directions, respectively, for the lymph node regions. These margins were considered too large. The reproducibility of the BHL was within 5 mm in the AP direction for 75% of patients.ConclusionsThe smallest setup margins were obtained when the matching position of the setup images was individually optimised for each patient. Optimal match for the breast alone is not optimal for the lymph node region, and, therefore, a threshold of 5 mm was introduced for residual position errors of the sternum, upper vertebrae, clavicula and chest wall to retain minimal setup margins of 5 mm. Because random interfraction variation in patient posture was large, we recommend daily online image guidance. The BHL should be verified with image guidance.

Highlights

  • Adjuvant radiotherapy (RT) of left-sided breast cancer is increasingly performed in voluntary deep inspiration breath-hold

  • In this study, the optimality of bony landmarks was investigated for matching of the orthogonal setup images in order to obtain the smallest residual errors in tangential treatment field images in RT of left-sided breast cancer treated with the voluntary deep inspiration breath-hold (vDIBH) technique

  • Best bony landmarks for alignment of the setup images Whole breast alone In our previous study, we have discovered that the compromise of the middle part of the ribs (MID_R)+UPPER_ST+middle part of the vertebrae (MID_V) is the best general choice for matching of the orthogonal setup images in RT of the whole breast performed in FB [17]

Read more

Summary

Introduction

Adjuvant radiotherapy (RT) of left-sided breast cancer is increasingly performed in voluntary deep inspiration breath-hold (vDIBH). The voluntary deep inhalation breath-hold technique (vDIBH) facilitates sparing of the heart and ipsilateral lung during radiotherapy (RT) of left-sided breast cancer [1,2]. The efficacy of this technique has been known for a long time [3] but the unavailability of resources has limited its use in many clinics. With a spirometerbased DIBH technique, median intra- and interfraction position variations of 2.0 mm and 3.6 mm, respectively, have been observed for passive markers on the breast surface in the anterior-posterior direction [6]. In previous studies the reproducibility of breath-hold level (BHL) has been measured using several techniques, such as infrared markers [6], surface imaging [7], cine images [8] or orthogonal planar images [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call