Abstract

There is little literature characterizing the temperature-dependent thermo-optic coefficient (TOC) for low pressure chemical vapor deposition (LPCVD) silicon nitride or plasma enhanced chemical vapor deposition (PECVD) silicon dioxide at temperatures above 300 K. In this study, we characterize these material TOC's from approximately 300-460 K, yielding values of (2.51 ± 0.08) · 10-5K-1 for silicon nitride and (5.67 ± 0.53) · 10-6K-1 for silicon oxide at room temperature (300 K). We use a simplified experimental setup and apply an analytical technique to account for thermal expansion during the extraction process. We also show that the waveguide geometry and method used to determine the resonant wavelength have a substantial impact on the precision of our results, a fact which can be used to improve the precision of numerous ring resonator index sensing experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.