Abstract

An attempt to establish a non-empirical relationship between the Charpy V-notch energy CVN and the fracture toughness K Ic is presented. We focus our study on the lower shelf of fracture toughness and on the onset of the ductile-to-brittle transition of a A508 Cl.3 low alloy structural steel. The methodology employed is based on the `local approach'. Brittle cleavage fracture is modelled in terms of the Beremin (1983) model, whereas the ductile crack advance preceding cleavage in the transition region is accounted for with the GTN model (Gurson, 1977; Tvergaard, 1982; Tvergaard and Needleman, 1984. Mechanical testing at different strain rates and temperatures allowed the establishment of the constitutive equations of the material in a rate dependent formulation. Numerous fracture tests on different specimen geometries provided the large data set necessary for statistical evaluation. All specimen types were modelled with finite element analysis. Special consideration was taken in order to handle the dynamic effects in the Charpy impact test in an appropriate way. The fracture toughness could be predicted from Charpy impact test results, on the lower shelf, by applying the `local approach'. In the transition region the parameters of the Beremin model were found to deviate from those established on the lower shelf. Detailed fractographic investigations showed that the nature of `weak spots' inducing cleavage fracture changes with temperature. It is concluded that the Beremin model must be refined in order to be applicable in the ductile-to-brittle transition region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call