Abstract

This paper presents the results of full-scale tests performed at the Colquitz River Bridge near Victoria, British Columbia (B.C.), Canada, during September 1992 to determine the dynamic characteristics of the structure. The five-span bridge was completed in 1954 and is part of the Trans-Canada Highway. It is 82.68 m long and 11.89 m wide, and has six continuous steel girders supporting a 175 mm thick concrete deck. This particular bridge was chosen for testing because of its typical nature of many B.C. bridges, its location in an area of high seismic risk, and its excellent site accessibility. The tests included extensive measurements of ambient vibrations induced by traffic and other sources to determine the dynamic characteristics of the bridge. The most significant vertical and lateral mode shapes and associated periods of vibration were determined from vibration measurements at more than 50 different locations of the deck, piers, and abutments. Although a large amount of data were collected, they were quickly processed and analyzed with an innovative system developed at The University of British Columbia. One of the important features of this system is that it permits the identification of the principal modes of vibration immediately after the data have been collected. In addition to the ambient vibration tests, quick release pullback tests were conducted to verify modal frequencies determined from the ambient vibration tests and to determine the damping of the fundamental modes. These tests consisted of loading the bridge at a selected location with a force of about 90 kN and then releasing this load very quickly to induce free vibrations. The information obtained from the field tests was used to refine a computer finite element model of the bridge, which, in turn, was used to gain insight into the dynamic behaviour of specific components of the bridge. Further, this information was used later by the bridge owner to evaluate the bridge's expected response during an earthquake. Key words: steel bridges, dynamic response, full-scale tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call