Abstract

The dynamic behaviour of milling processes can be analysed using process simulations based on measured frequency response functions. However, the determination of these functions for micro-milling processes is challenging due to small tool diameters of 1 mm or less, the influence of higher spindle speeds on the dynamic behaviour, and runout errors. Therefore, an approach for analysing micro-milling tools based on an excitation using bearing balls with a diameter of 1 mm, shot by compressed air, is presented. The measured dynamic response is applied to a geometric physically-based process simulation in order to analyse tool vibrations in a micro-milling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.