Abstract

In this work, the influence of two-dimensional state density on oscillations of transverse electrical conductivity in heterostructures with rectangular quantum wells is investigated. A new analytical expression is derived for calculating the temperature dependence of the transverse electrical conductivity oscillation and the magnetoresistance of a quantum well. For the first time, a mechanism has been developed for oscillating the transverse electrical conductivity and magnetoresistance of a quantum well from the first-order derivative of the magnetic field (differential) at low temperatures and weak magnetic fields. The oscillations of electrical conductivity and magnetoresistance of a narrow-band quantum well with a non-parabolic dispersion law are investigated. The proposed theory investigated the results of experiments of a narrow-band quantum well (InxGa1-xSb).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call