Abstract

The present contribution shows how it is possible to determine the homogenized thermo-elastic characteristics of a natural stone masonry wall, taking into account the material properties of stone and mortar as functions of temperature increase, as well as the geometrical characteristics of their assembly. Joints are incorporated in the analysis through a numerical homogenization procedure. As a result, membrane and bending stiffness coefficients, as well as thermal-induced efforts, of an equivalent plate are obtained. Such homogenized thermomechanical characteristics make it possible to determine the deformed shape of the wall after a certain time of fire exposure. As an example, the calculation procedure is performed on a particular configuration of infinitely wide wall, illustrating the influence of the joints on its thermal deformed shape. To assess the practical validity of this homogenization-based calculation procedure, results of the numerical homogenized model (incorporating joints) are compared to those of a homogeneous model (without joints), and to available experimental results obtained on a 3 m-high, 3 m-wide wall exposed to fire loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.