Abstract

The aim of this paper consists in the determination of the piezoelectric transverse coefficient d31 of PbZrxTi1−xO3 (PZT) thin films integrated in dedicated multilayer silicon-based micromembranes exhibiting an initial buckled profile. An analytical model specific to this configuration was built and used for the calculation of d31 starting with the static profiles of the microfabricated devices determined by means of a double-beam interferometer. The influence of dc voltage and buckling effects on the d31 piezoelectric coefficient at the microscale were investigated, and high values were obtained, from 30to75pm∕V, within a hysteresyslike cycle. These results demonstrated the good electrical behavior of PZT thin films at the microscale with a low influence of buckling effects and determined optimal operation conditions for high values of d31.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.